From the nuclear furnace at the core to the extremely hot plasma of its corona, the sun is the definition of hot! Far from the “giant ball of fire” we learned about in first grade, it is more accurately described as a sphere of plasma. Plasma is not a common everyday household item. You know of plasma- lightning is an example. If you’ve seen the northern lights, you are seeing a colorful display of plasma. Plasma is hot, ionized gas.
The sun has plenty of plasma. Like other stars, it supports itself from the crushing weight of gravity by fusing hydrogen atoms at its core. Pressures and temperatures being what they are at the core of the sun, atoms that normally don’t like being all that close will overcome their repulsion and fuse together. In this process, they release prodigious amounts of energy.
It was actually the icon scientist Albert Einstein who quantified exactly how much energy in his uber-famous equation, E=mc (squared). In English, this equation says that you can get an enormous amount of energy out of a little bit of mass. The variable “c” stands for the speed of light, which is a pretty big quantity. And if you square it, it becomes super big. No matter how small your mass (m), if you multiply it by the speed of light squared, you have a very big number, which is E, the amount of energy you can get from it. This idea opened up a world of hurt.
Here on earth, we have harnessed the power of fission to unleash energy from an atom. We have figured out how to take a heavy element like uranium and “fission” it by tossing a neutron at it. By splitting a very heavy element like Uranium, we can release exorbitant amounts of energy. Unfortunately a by-product of the process is radioactive material, called “waste” due to its unpleasantness and difficulty of disposal without harm to humans. We use our knowledge for good, in our nuclear power plants, but also for bad, in our nuclear bombs. Hiroshima and Nagasaki both felt the power of unleashed of nuclear fission.
Stars don’t “fiss,” they fuse. Stars release energy through nuclear fusion. The sun isn’t filled with heavy elements like uranium. All they have at their disposal to keep alive is hydrogen. Luckily the universe decided that elements lighter than iron would be better off if they fused, rather than fissioned. The sun has lots of light elements to fuse, and it does so at will. This releases the life-giving energy that we receive some 93 million miles away. We seem to have a very advantageous spot in the solar system.
Think about toasting marshmallows on a stick. When you get too close to the fire, you end up with a crispy marshmallow that you have to snuff before popping into your mouth to hear the sizzle of your own saliva. If the marshmallow is too far from the fire, it remains cool and solid, not the most pleasing form of the food product. I find it both fascinating and reassuring that the earth maintains the place of the well-browned marshmallow. Not too close to the nuclear furnace, and not too far. It’s just right to keep us comfortable. So even with changing temperatures and seasons, we can be grateful for our place in space.
1 comment:
Dr. Fred Hess!!!!!
Post a Comment